Families of 2-critical sets for dihedral groups
نویسندگان
چکیده
The dihedral group is defined by 〈x, y | x = y = e, xy = yx−1〉 for n ≥ 3 and has order 2n. In this note four families of 2-critical sets are presented for the Latin square based on this group for even n.
منابع مشابه
Asymptotic Nonexistence of Difference Sets in Dihedral Groups
Almost all known results on difference sets need severe restrictions on the parameters. The main purpose of this paper is to provide an asymptotic nonexistence result free from any assumptions on the parameters. The only assumption we make is that the underlying group is dihedral. Difference sets originally mainly were studied in cyclic groups where they exist in abundance. For example, for any...
متن کاملOn the eigenvalues of Cayley graphs on generalized dihedral groups
Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$. Then the energy of $Gamma$, a concept defined in 1978 by Gutman, is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$. Also the Estrada index of $Gamma$, which is defined in 2000 by Ernesto Estrada, is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$. In this paper, we compute the eigen...
متن کاملOn the zero forcing number of some Cayley graphs
Let Γa be a graph whose each vertex is colored either white or black. If u is a black vertex of Γ such that exactly one neighbor v of u is white, then u changes the color of v to black. A zero forcing set for a Γ graph is a subset of vertices Zsubseteq V(Γ) such that if initially the vertices in Z are colored black and the remaining vertices are colored white, then Z changes the col...
متن کاملClassifying fuzzy normal subgroups of finite groups
In this paper a first step in classifying the fuzzy normalsubgroups of a finite group is made. Explicit formulas for thenumber of distinct fuzzy normal subgroups are obtained in theparticular cases of symmetric groups and dihedral groups.
متن کاملCalculations of Dihedral Groups Using Circular Indexation
In this work, a regular polygon with $n$ sides is described by a periodic (circular) sequence with period $n$. Each element of the sequence represents a vertex of the polygon. Each symmetry of the polygon is the rotation of the polygon around the center-point and/or flipping around a symmetry axis. Here each symmetry is considered as a system that takes an input circular sequence and g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Australasian J. Combinatorics
دوره 29 شماره
صفحات -
تاریخ انتشار 2004